Успешное подключения к БД.

-------------------
Вы знаете, как устроен наш мир?



---Load files---
Совет: если изображения отображаются неправильно, попробуйте очистить кеш браузера!
Поиск на странице - нажмите "Ctrl+F", Поиск на сайте - поле ввода "Яндекс-Найти" на "шапке",
Поиск в интернете - 1) выделите текст, 2) нажмите правую клавишу мыши и 3) выберите поисковик.

С О Д Е Р Ж А Н И Е

------- Тимин В.А. (mail: timinva@yandex.ru) Дата последней загрузки: October 31 2017. -------
Ссылка на этот материал: molyekulyarno-kinyetichyeskaya_tyeoriya.htm)
Молекулярно-кинетическая теория

1.      Молекулярно-кинетическая теория

Из Википедии:

Характеристики тела определяются совокупностью механических величин, таких как масса, плотность, объем, полная энергия, давление, а также специфических термодинамических величин, определяющих параметры теплового движения, таких как температура. Термодинамические характеристики могут быть использованы только для систем, находящихся в термодинамическом равновесии.

Состояние однородной системы при заданном числе частиц N = const определяется термодинамическими переменными – давлением, объемом и температурой - p, V, T . Связь между этими переменными определяется свойствами рассматриваемого вещества и задается термическим уравнением:

.

Для идеального газа термическим уравнением является уравнение Клапейрона-Менделеева:

где  - масса объема и масса одной молекулы вещества соответственно,

R – универсальная газовая постоянная. В системе СИ R = 8,31441±0?00026 Дж⁄(моль∙К). В системе СГС R = 8,31441·107 Эрг⁄(моль∙К). Более удобна другая форма записи:

,

где  - молярный объема вещества.

Рассмотрим частные газовые законы.

Для изотермического процесса, происходящего при постоянной температуре и массе, из этого уравнения следует, что

,

т.е. при постоянной температуре и массе газа его давление обратно пропорционально объему. Этот закон называется законом Бойля и Мариотта, а процесс, при котором температура постоянна, называется изотермическим.

Для изобарного процесса, происходящего при постоянном давлении, из него следует, что

,

т.е. объем пропорционален абсолютной температуре. Этот закон называют законом Гей-Люссака.

Для изохорного процесса, происходящего при постоянном объеме, из него следует, что

,

т.е. давление пропорционально абсолютной температуре. Этот закон называют законом Шарля.

Эти три газовых закона, таким образом, являются частными случаями уравнения состояния идеального газа. Исторически они сначала были открыты экспериментально, и лишь значительно позднее получены теоретически, исходя из молекулярных представлений.

1.1.     Молекулярно-кинетическая теория газов

Молекулярно-кинетическая теория (МКТ) – это учение, которое объясняет тепловые явления в макроскопических телах и внутренние свойства этих тел движением и взаимодействием атомов, молекул и ионов, из которых состоят тела. В основе МКТ строения вещества лежат три положения:

1. Вещество состоит из частиц – молекул, атомов и ионов. В состав этих частиц входят более мелкие элементарные частицы. Молекула – наименьшая устойчивая частица данного вещества. Молекула обладает основными химическими свойствами вещества. Молекула является пределом деления вещества, то есть самой маленькой частью вещества, которая способна сохранять свойства этого вещества. Атом – это наименьшая частица данного химического элемента.

Современные приборы позволяют наблюдать изображения отдельных атомов и молекул. С помощью электронного микроскопа или ионного проектора (микроскопа) можно получить изображения отдельных атомов и оценить их размеры. Диаметр любого атома имеет порядок d = 10-8 см (10-10 м). Размеры молекул больше размеров атомов. Поскольку молекулы состоят из нескольких атомов, то чем больше количество атомов в молекуле, тем больше ее размер. Размеры молекул лежат в пределах от 10-8 см (10-10 м) до 10-5 см (10-7 м). Например, размер молекулы белка составляет 4,3*10-7 см.

2. Частицы, из которых состоит вещество, находятся в непрерывном хаотическом (беспорядочном) движении.

Непрерывное хаотическое движение частиц подтверждается броуновским движением и диффузией. Хаотичность движения означает, что у молекул не существует каких-либо предпочтительных путей и их движения имеют случайные направления. Это означает, что все направления равновероятны. Диффузия (от латинского diffusion – растекание, распространение) – явление, когда в результате теплового движения вещества происходит самопроизвольное проникновение одного вещества в другое (если эти вещества соприкасаются). Взаимное перемешивание веществ происходит по причине непрерывного и беспорядочного движения атомов или молекул (или других частиц) вещества. С течением времени глубина проникновения молекул одного вещества в другое увеличивается. Глубина проникновения зависит от температуры: чем выше температура, тем больше скорость движения частиц вещества и тем быстрее протекает диффузия. Диффузия наблюдается во всех состояниях вещества – в газах, жидкостях и твердых телах. Примером диффузии в газах служит распространение запахов в воздухе при отсутствии прямого перемешивания. Диффузия в твердых телах обеспечивает соединение металлов при сварке, пайке, хромировании и т.п. В газах и жидкостях диффузия происходит намного быстрее, чем в твердых телах.

3. Частицы вещества взаимодействуют друг с другом – притягиваются и отталкиваются.

Существование устойчивых жидких и твердых тел объясняется наличием сил межмолекулярного взаимодействия (сил взаимного притяжения и отталкивания). Этими же причинами объясняется малая сжимаемость жидкостей и способность твердых тел сопротивляться деформациям сжатия и растяжения. Силы межмолекулярного взаимодействия имеют электромагнитную природу – это силы электрического происхождения. Причиной этого является то, что молекулы и атомы состоят из заряженных частиц с противоположными знаками зарядов – электронов и положительно заряженных атомных ядер. В целом молекулы электрически нейтральны. По электрическим свойствам молекулу можно приближенно рассматривать как электрический диполь. Силы притяжения принято считать отрицательными, а силы отталкивания – положительными.

Эти основные положения подтверждаются экспериментально и теоретически.

1.2.     Моль вещества

Массы отдельных молекул и атомов очень малы, поэтому в расчѐтах удобнее использовать не абсолютные значения масс, а относительные. Относительная молекулярная масса (или относительная атомная масса) вещества Мr – это отношение массы молекулы (или атома) данного вещества к 1/12 массы атома углерода.

где m0 – масса молекулы (или атома) данного вещества,

m0C – масса атома углерода.

Относительная молекулярная (или атомная) масса вещества показывает, во сколько раз масса молекулы вещества больше 1/12 массы изотопа углерода С12. Относительная молекулярная (атомная) масса выражается в атомных единицах массы. Атомная единица массы – это 1/12 массы изотопа углерода С12. Точные измерения показали, что атомная единица массы составляет 1,660*10-27 кг, то есть 1 а.е.м. = 1,660 * 10-27 кг. Относительная молекулярная масса вещества может быть вычислена путѐм сложения относительных атомных масс элементов, входящих в состав молекулы вещества. Относительная атомная масса химических элементов указана в периодической системе химических элементов Д.И. Менделеева. В периодической системе Д.И. Менделеева для каждого элемента указана атомная масса, которая измеряется в атомных единицах массы (а.е.м.). Например, атомная масса магния равна 24,305 а.е.м., то есть магний в два раза тяжелее углерода, так как атомная масса углерода равна 12 а.е.м. (это следует из того, что 1 а.е.м. = 1/12 массы изотопа углерода, который составляет большую часть атома углерода). Зачем измерять массу молекул и атомов в а.е.м., если есть граммы и килограммы? Конечно, можно использовать и эти единицы измерения, но это будет очень неудобно для записи (слишком много чисел придѐтся использовать для того, чтобы записать массу). Чтобы найти массу элемента в килограммах, нужно атомную массу элемента умножить на 1 а.е.м. Атомная масса находится по таблице Менделеева (записана справа от буквенного обозначения элемента). Например, вес атома магния в килограммах будет: m0Mg = 24,305 * 1 a.e.м. = 24,305 * 1,660 * 10-27 = 40,3463 * 10-27 кг Массу молекулы можно вычислить путѐм сложения масс элементов, которые входят в состав молекулы. Например, масса молекулы воды (Н2О) будет равна: m0Н2О = 2 * m0H + m0O = 2 * 1,00794 + 15,9994 = 18,0153 a.e.м. = 29,905 * 10-27 кг Количество вещества принято считать пропорциональным числу частиц. Количество вещества – это физическая величина, характеризующая относительное число молекул и атомов в теле. Единица количества вещества называется молем (моль). Моль равен количеству вещества системы, в которой содержится столько же молекул, сколько содержится атомов в 0,012 кг углерода С12. То есть, если у нас есть система с каким-либо веществом, и в этой системе столько же молекул этого вещества, сколько атомов в 0,012 кг углерода, то мы можем сказать, что в этой системе у нас 1 моль вещества.

1.3.     Постоянная Авогадро

Количество вещества v равно отношению числа молекул в данном теле к числу атомов в 0,012 кг углерода, то есть количеству молекул в 1 моле вещества.

где N – количество молекул в данном теле,

NA – количество молекул в 1 моле вещества, из которого состоит тело.

NA – это постоянная Авогадро. Количество вещества измеряется в молях. Постоянная Авогадро – это количество молекул или атомов в 1 моле вещества. Эта постоянная получила свое название в честь итальянского химика и физика Амедео Авогадро (1776 – 1856). В 1 моле любого вещества содержится одинаковое количество частиц. NA = 6,02*1023 моль-1.

Молярная масса – это масса вещества, взятого в количестве одного моля:

m = m0*NA

где m0 – масса молекулы.

Молярная масса выражается в килограммах на моль (кг/моль = кг*моль-1). Молярная масса связана с относительной молекулярной массой соотношением:

m » 10-3 * Mr [моль-1*кг].

Масса любого количества вещества m равна произведению массы одной молекулы m0 на количество молекул:

m = m0N = m0NAv = mv.

Количество вещества равно отношению массы вещества к его молярной массе:

Массу одной молекулы вещества можно найти, если известны молярная масса и постоянная Авогадро:

Более точное определение массы атомов и молекул достигается при использовании масс-спектрометра – прибора, в котором происходит разделение пучком заряженных частиц в пространстве в зависимости от их массы заряда при помощи электрических и магнитных полей. 

Для примера найдем молярную массу атома магния. Как мы выяснили выше, масса атома магния равна m0Mg = 40,3463 * 10-27 кг. Тогда молярная масса будет: m = m0Mg*NA = 40,3463*10-27*6,02*1023 = 2,4288*10-2 кг/моль То есть в одном моле «помещается» 2,4288*10-2 кг магния. Это примерно 24,28 грамм. Как видим, молярная масса (в граммах) практически равна атомной массе, указанной для элемента в таблице Менделеева. Поэтому, когда указывают атомную массу, то обычно делают так: Атомная масса магния равна 24,305 а.е.м. (г/моль).

1.4.     Взаимодействие в веществе

Сила взаимодействия между молекулами имеет определенную зависимость от расстояния между молекулами. Эта зависимость примерно изображена на рис. 1.1.

 

Силы притяжения  действуют по мере сближения двух атомов или молекул, пока расстояние r между центрами молекул находится в районе 10-9 м (2-3 диаметра молекул). По мере увеличения этого расстояния силы притяжения ослабевают. Силы притяжения являются короткодействующими силами:

,

где a – коэффициент, зависящий от вида сил притяжения и строения взаимодействующих молекул.

При дальнейшем сближении атомов или молекул на расстояниях между центрами молекул порядка 10-10 м (это расстояние сравнимо с линейными размерами неорганических молекул) появляются силы отталкивания  (синяя линия на рис. 1.1). Эти силы появляются за счет взаимного отталкивания положительно заряженных атомов в молекуле и убывают с увеличением расстояния r еще быстрее, чем силы притяжения (что видно на графике – синяя линия более «круто» стремится к нулю, чем красная).

,

где b – коэффициент, зависящий от вида сил отталкивания и строения взаимодействующих молекул. На расстоянии r = r0 (это расстояние примерно равно сумме радиусов молекул) силы притяжения уравновешивают силы отталкивания, а проекция результирующей силы  = 0. Этому состоянию соответствует наиболее устойчивое расположение взаимодействующих молекул. В общем случае результирующая сила равна:

.

При при r > r0 притяжение молекул превосходит отталкивание, при r < r0 – отталкивание молекул превосходит их притяжение. Зависимость сил взаимодействия молекул от расстояния между ними качественно объясняет молекулярный механизм появления сил упругости в твердых телах. При растяжении твердого тела частицы удаляются друг от друга на расстояния, превышающие r0. При этом появляются силы притяжения молекул, которые возвращают частицы в первоначальное положение. При сжатии твердого тела частицы сближаются на расстояния, меньшие расстояния r0. Это приводит к увеличению сил отталкивания, которые возвращают частицы в первоначальное положение и препятствуют дальнейшему сжатию. Если смещение молекул из положений равновесия мало, то силы взаимодействия растут линейно с увеличением смещения. На графике этот отрезок показан утолщенной линией светло-зеленого цвета. Поэтому при малых деформациях (в миллионы раз превышающих размер молекул) выполняется закон Гука, согласно которому сила упругости пропорциональна деформации.

1.5.     Движение молекул в газах, жидкостях и твѐрдых телах

Молекулярно-кинетическая теория даѐт объяснение тому, что все вещества могут находиться в трѐх агрегатных состояниях: в твѐрдом, жидком и газообразном. Например, лѐд, вода и водяной пар. Часто плазму считают четвѐртым состоянием вещества. Агрегатные состояния вещества (от латинского aggrego – присоединяю, связываю) – состояния одного и того же вещества, переходы между которыми сопровождаются изменением его физических свойств. В этом и заключается изменение агрегатных состояний вещества.

Во всех трѐх состояниях молекулы одного и того же вещества ничем не отличаются друг от друга, меняется только их расположение, характер теплового движения и силы межмолекулярного взаимодействия.

1.4.1. Движение молекул в газах

В газах обычно расстояние между молекулами и атомами значительно больше размеров молекул, а силы притяжения очень малы. Поэтому газы не имеют собственной формы и постоянного объѐма. Газы легко сжимаются, потому что силы отталкивания на больших расстояниях также малы. Газы обладают свойством неограниченно расширяться, заполняя весь предоставленный им объѐм. Молекулы газа движутся с очень большими скоростями, сталкиваются между собой, отскакивают друг от друга в разные стороны. Многочисленные удары молекул о стенки сосуда создают давление газа.

1.4.2. Движение молекул в жидкостях

В жидкостях молекулы не только колеблются около положения равновесия, но и совершают перескоки из одного положения равновесия в соседнее. Эти перескоки происходят периодически. Временной отрезок между такими перескоками получил название среднее время оседлой жизни (или среднее время релаксации) и обозначается буквой . Иными словами, время релаксации – это время колебаний около одного определѐнного положения равновесия. При комнатной температуре это время составляет в среднем 10-11 с. Время одного колебания составляет 10-12…10-13 с. Физика. Молекулярная физика. 13

Время оседлой жизни уменьшается с повышением температуры. Расстояние между молекулами жидкости меньше размеров молекул, частицы расположены близко друг к другу, а межмолекулярное притяжение велико. Тем не менее, расположение молекул жидкости не является строго упорядоченным по всему объѐму. Жидкости, как и твѐрдые тела, сохраняют свой объѐм, но не имеют собственной формы. Поэтому они принимают форму сосуда, в котором находятся. Жидкость обладает таким свойством, как текучесть. Благодаря этому свойству жидкость не сопротивляется изменению формы, мало сжимается, а еѐ физические свойства одинаковы по всем направлениям внутри жидкости (изотропия жидкостей). Впервые характер молекулярного движения в жидкостях установил советский физик Яков Ильич Френкель (1894 – 1952).

1.4.3. Движение молекул в твѐрдых телах

Молекулы и атомы твѐрдого тела расположены в определѐнном порядке и образуют кристаллическую решѐтку. Такие твѐрдые вещества называют кристаллическими. Атомы совершают колебательные движения около положения равновесия, а притяжение между ними очень велико. Поэтому твѐрдые тела в обычных условиях сохраняют объѐм и имеют собственную форму.

1.6.     Идеальный газ

Одной из простейших содержательных моделей МКТ является модель идеального газа. Идеальный газ – это модель разреженного газа, в которой пренебрегается взаимодействием между молекулами. Силы взаимодействия между молекулами довольно сложны. На очень малых расстояниях, когда молекулы вплотную подлетают друг к другу, между ними действуют большие по величине силы отталкивания. На больших или промежуточных расстояниях между молекулами действуют сравнительно слабые силы притяжения. Если расстояния между молекулами в среднем велики, что наблюдается в достаточно разреженном газе, то взаимодействие проявляется в виде относительно редких соударений молекул друг с другом, когда они подлетают вплотную. В идеальном газе взаимодействием молекул вообще пренебрегают.

Границы применимости модели идеального газа зависят от рассматриваемой задачи. Если необходимо установить связь между давлением, объемом и температурой, то газ с хорошей точностью можно считать идеальным до давлений в несколько десятков атмосфер. Если изучается фазовый переход типа испарения или конденсации или рассматривается процесс установления равновесия в газе, то модель идеального газа нельзя применять даже при давлениях в несколько миллиметров ртутного столба.

Давление газа на стенку сосуда является следствием хаотических ударов молекул о стенку, вследствие их большой частоты действие этих ударов воспринимается нашими органами чувств или приборами как непрерывная сила, действующая на стенку сосуда и создающая давление.

Пусть одна молекула находится в сосуде, имеющем форму прямоугольного параллелепипеда (рис. 2). Рассмотрим, например, удары этой молекулы о правую стенку

x

 

dpx=F∙dt

 
clip_image001

Рис. 2. Механизм появления давления на стенку при соударениях молекул о стенку.

сосуда, перпендикулярную оси x. Считаем удары молекулы о стенки абсолютно упругими, тогда угол отражения молекулы от стенки равен углу падения, а величина скорости в результате удара не изменяется. В нашем случае при ударе проекция скорости молекулы на ось Y не изменяется, а проекция скорости на ось x меняет знак. Таким образом, проекция импульса изменяется при ударе на величину, равную -2mvx, знак «-» означает, что проекция конечной скорости отрицательна, а проекция начальной – положительна.

Определим число ударов молекулы о данную стенку за 1 секунду. Величина проекции скорости не изменяется при ударе о любую стенку, т.е. можно сказать, что движение молекулы вдоль оси x равномерное. За 1 секунду она пролетает расстояние, равное проекции скорости vx. От удара до следующего удара об эту же стенку молекула пролетает вдоль оси x расстояние, равное удвоенной длине сосуда 2L. Поэтому число ударов молекулы о выбранную стенку равно . Согласно 2-му закону Ньютона средняя сила равна изменению импульса тела за единицу времени. Если при каждом ударе о стенку частица изменяет импульс на величину 2mvx, а число ударов за единицу времени равно , то средняя сила, действующая со стороны стенки на молекулу (равная по величине силе, действующей на стенку со стороны молекулы), равна , а среднее давление молекулы на стенку равно , где V – объем сосуда.

Если бы все молекулы имели одинаковую скорость, то общее давление получалось бы просто умножением этой величины на число частиц N, т.е. . Но поскольку молекулы газа имеют разные скорости, то в этой формуле будет стоять среднее значение квадрата скорости, тогда формула примет вид: .

Квадрат модуля скорости равен сумме квадратов ее проекций, это имеет место и для их средних значений: . Вследствие хаотичности теплового движения средние значения всех квадратов проекций скорости одинаковы, т.к. нет преимущественного движения молекул в каком-либо направлении. Поэтому , и тогда формула для давления газа примет вид: . Если ввести кинетическую энергию молекулы , то получим , где  - средняя кинетическая энергия молекулы.

Согласно Больцману средняя кинетическая энергия молекулы пропорциональна абсолютной температуре , и тогда давление идеального газа равно  или

.

Если ввести концентрацию частиц , то формула перепишется так:

p = nkT,

Число частиц можно представить в виде произведения числа молей v (не путать со скоростью) на число частиц в моле, равное числу Авогадро N = vNA, а произведение NAk = R. Тогда (1) запишется в виде:

pV = vRT,

Уравнения (1), (2) и (3) – это разные формы записи уравнения состояния идеального газа, они связывают давление, объем и температуру газа. Эти уравнения применимы как к чистым газам, так и к смесям газов, в последнем случае под N, n и ν следует понимать полное число молекул всех сортов, суммарную концентрацию или полное число молей в смеси. Для чистого газа число молей , где М – масса газа, а μ – масса одного моля (молярная масса). Тогда уравнение (3) примет вид:

Уравнение состояния в этой форме называют уравнением Клапейрона–Менделеева.

 

Ссылка на этот материал: molyekulyarno-kinyetichyeskaya_tyeoriya.htm)

- - - ВЫ МОЖЕТЕ ОСТАВИТЬ ПЕРВЫЙ КОММЕНТАРИЙ! - - -


Введите логин:      Введите эл.адрес:

Введите пароль:    Ваш телефон:        

Введите Ваш комментарий:
Формулы:

(возможно использование BB-кодов для оформления комментария и кодов LaTeX для ввода формул)

Решите пример: 88 делить на "восемь" равно:

---Load files---
Сегодня - 18_08_2019
Время переоткрытия сайта 18 ч 00 м по Гр.
Календарь
на АВГУСТ месяц 2018 г.
Пн Вт Ср Чт Пт Сб Вс
      1; 2; 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
(8 431)

---Load files---

---Load files---

© Все права защищены 2017-2019 При использовании материалов сайта ссылка на http://lowsofphisics.ru обязательна.

В НАЧАЛО
КОММЕНТ
В КОНЕЦ
U:14 V:25
Уникальных посетителей: 14 Просмотров: 25